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RADIATION COUPLED SHOCK LAYER 

INCLUDING UPSTREAM ABSORPTION EFFECTS* 

KUEI-YUAN CHJEN 

Aerophysics Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 

(Received 29 August 1966 and in revisedform 31 May 1967) 

Ah&n&--The method of Heaslet and Baldwin is extended with the introduction of a cold, black and 
porous wall, so as to effectively alter the downstream boundary condition for absorbing shock layers. It is 
shown that the general problem may be resolved into five subcases related to the net variation of radiative 
flux transfer across the shock with change in shock stand-off distance. The gas ahead of the shock may be 

either heated or cooled. For certain cases of interest this precursory heating may be significant. 
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NOMENCLATURE 

integration constants, equations 
(2) and (3), respectively ; 
exponential integral of the nth 
order ; 
defined by equation (20) ; 
defined by equation (22) ; 
enthalpy ; 
radiation-convection parameter, 
below equation (13) ; 
reference K defined by equation 

(38); 
shock detachment thickness; 
upstream absorption length, equa- 
tion (39) ; 
constant, equation (9) ; 
integration constant, equation (1) ; 
constant, equation (9) ; 
pressure ; 
radiative flux ; 
dimensionless radiative flux, equa- 
tion (37); 
gas constant ; 
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Scientific Research. Contract No. AF 49(638)-1621. Nu- 
merical results were obtained using the facilities of the 
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T, temperature ; 

T, dimensionless temperature, equa- 
tion (36) ; 

U, velocity ; 

V, normalized velocity, equation (11). 

Greek symbols 
gas constant ; 
defined by equation (16) ; 
shock strength parameter, equa- 
tion (17); 
mass absorption coefficient ; 
modified optical thickness, equa- 
tion (10); 
density ; 
Stefan-Boltzmann constant ; 
optical thickness (Bouguer num- 
ber), equation (7) ; 
ahead -of and behind the shock, 
respectively ; 
quantities evaluated at the wall ; 
immediately before and behind the 
shock, respectively. 

INTRODUCJ’ION 

THE PRESENCE of radiation as one of the mech- 
anisms for energy transfer in a hypersonic flow 
complicates the problem considerably. Physic- 
ally it eliminates the classical limitation to 
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downstream facing effects in supersonic flow. 
Mathematically it manifests itself by the appear- 
ance of a nonlinear integro-differential energy 
equation. 

governing equations are the familiar 

Yoshikawa and Chapman [l] considered the 
radiating shock layer problem assuming a non- 
absorbing upstream flow, the latter being in- 
cluded in a study of shock wave structures by 
Heaslet and Baldwin [2]. Of course, due to the 
inherent coupling between the upstream and 
downstream flow fields undergoing radiant 
energy exchanges across the shock, the shock 
layer cannot be treated independently. More 
precisely, all of the conditions, including temper- 
ature and local Mach number, for those points 
just ahead of the shock depend upon the body 
geometry, surface properties and far upstream 
fluid properties ; consequently the conditions 
immediately behind the shock and the entire 
shock layer are affected in turn. In particular, the 
jump conditions across the inviscid shock dis- 
continuity are unknown initially, and instead 
are to be found along with the shock wave 
“structure”. Pai and Speth [3] have shown that 
the effective temperature jump across the shock 
is reduced by upstream heating in a shock 
structure problem, which can also be seen from 
the results shown in [2]. The introduction of a 
cold wall at a finite distance downstream makes 
possible both upstream cooling as well as 
heating, and it is the main interest of the present 
investigation to study the radiative flux coupling 
ahead and behind of a transparent inviscid 
shock discontinuity including the cold surface 
influence. 

Here m,, cl and c2 are integration constants to 
be evaluated far upstream. Contributions from 
radiative pressure and radiative internal energy 
are assumed negligible, and the gas both grey 
and in local thermodynamic equilibrium. All 
notations in equations (l-5) are of standard 
form; the radiative flux term, q. is given by [4, S] 

and is defined to be positive in the negative x- 
direction. The optical thickness, z, is defined as 

and attains its maximum positive value for the 
overall shock detachment thickness, L, 

B, E,, and K are the Stefan-Boltzmann constant, 
the exponential integral of the second order [4], 
and the mass absorption coefftcient, respec- 
tively. 

GOVERNING EQUATIONS 

Some simplification of the rather complex 
general problem is appropriate. Consider the 
case of a uniform hypersonic flow incident on a 
cold, black and porous wall. All properties in 
the flow field are assumed to be dependent on 
the single variable, x (see Fig. 1). For an inviscid, 
emitting and absorbing but otherwise perfect 
gas, in such a one-dimensional, steady flow, the 

pu = ml (1) 

p + m,u = mlcl (2) 

m,(h + +u”) - q = c2ml (3) 

p = pRT (4) 

h= ’ ’ ~- 
Y-lP' 

(5) 

q(r)=Zo:[Sgn(t-r)T”E2ir-rldt (6) 

r = iprcdx 
0 

(7) 

L 

t, = Jpicdx. 
0 

- 
A&- I 

rnocr 
780 

$. 
rn=L x 
wall 
r-r 

FIG 1. Schematic of flow. 
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The assumption of a porous wall results from 
the choice of a one-dimensional flow model and 
thus the need to absorb “mass”. For hypersonic 
flow, the shock layer kinetic energy is much less 
than its thermal energy. Since our main interest 
is the determination of the thermal field, the 
introduction of a realistic cold wall as a heat 
sink is plausible. It is anticipated that a one- 
dimensional model will yield some useful insight 
into the behavior for multi-dimensional prob- 
lems with the implied geometrical dilutation. It 
is worth noting that the one-dimensional model 
furnishes an upper-bound. 

Since the differential approximation [6] 
method, or its equivalent kernel substitution 
method [7] in the one-dimensional case has 
been found to give rather accurate results for 
the shock structure problem [8], the same 
approximation has been adopted here. Hence 
we assume 

E,(r) N m exp (- nz). (9) 

Following Heaslet and Baldwin [2], we 
introduce a modified optical thickness para- 
meter 

5 = nz (10) 

and a normalized velocity 

v(5) = WC1 (11) 

so that 

c: T=TRV(l-“). (12) 

The governing equations can be combined into 
a single integral equation of the form 

“2 2Y “+2(Y-l)c, 

Y+l r+lz 
Cr 

=- f (” 
s 

- “2)4 Sgn (< - &) exp 
-UJ 

(-It - h(M5, (13) 

where K = 32mac~(y - l)/(y + 1) mlnR4, which 
is proportional to the ratio of the radiative to the 

convective energy transfer, i.e. an inverse modi- 
fied Boltzmann number. 

Far upstream (5 + - cc) the right-hand side 
of equation (13) vanishes and ” = ut, say. If u2 
designates the other root for the case ofvanishing 
4, then the left-hand side .of equation (13) 
implies 

“1 +“2 
2Y 

=y+l 
(14) 

Since the radiative flux is continuous at the 
shock, where we set r = 0, equation (13) gives 

“(o-) + “(o+) = -2.L 
Y+l 

(15) 

where the superscripts + and - refer to im- 
mediately behind and before the shock, res- 
pectively. Of course, the radiation may modify 
v(O-) to something other than ur. Thus the 
classical Rankine-Hugoniot conditions for con- 
ditions on the downstream side of a shock (and 
M, free stream) are valid only when the net 
radiative flux at the shock vanishes. 

For convenience introduce the continuous 
variable 

W)=(-+-“)~=e~+(“-“1)(“-“2) 

(16) 
where 

8, = S(“* - “2)2* (17) 

The point where the local Mach number is unity 
written in the present notation is given by 

u* = Y--$-l = f [u(O-) + HO+)] (17a) 

and so we have 

“(5) = 5 - (Sgn 0 l?m*. (18) 

Consequently the governing equation can be 
recast as 

8 - 8, = 3 7 Sgn (t - td fI?Wl exp -a 
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where 

+ (Sgn C)(s)@ - 0-j’. 

(20) 
Note that for a free stream Mach number 
approaching infinity, 6, approaches (y +- l)-* 
(i.e. 0.1736 if y = s). 

Differentiating equation (19) with respect to 
Lj, we have 

de=,_, 
a (21) 

where 

Thus 

dG 

Z=e=e 

or finally 

dG -= 8, - 0 

d9 F-G 

(23) 

(24 

which is precisely the same relation developed 
by Heaslet and Baldwin [2] for the shock 
structure problem. Again both F and G have 
two branches, which will be denoted by sub- 
scripts a and b for ahead of and behind the 
shock, respectively. 

The boundary conditions are 

<+ -cc: 8 = 8,. , G, = Fde,) (25) 

r = 5w: 13 = 0(&J E 8,, G, = 8, - 0,. 

(26) 

The far upstream boundary condition is 
identical to that for the shock structure problem, 
and follows upon combining equations (21) and 
(23) and noting that (de/do e; _ _ a, = 0. The wall 
condition comes from equations (19) and (22). 
It will be clear that 8, is a convenient starting 
value in place of the equivalent &,,. 

The definition of G, equation (22). makes 
clear that G is a continuous function of r, and 
hence of 8. A solution may be obtained in the 
o-plane by numerical integration of equation 
(24) from 8, and 8, for the respective branches, 
with equations (25) and (26) furnishing starting 
values. The shock exists at G,(8) = Gb(0) corres- 
ponding to 5 = 0. Equation (21) then implies 
5 = r(0) and a specific wall location, 5, for the 
assumed 9, 

SUBCASES 

Physically the introduction of a cold wall 
introduces one more characteristic length i.e. 
L. It also introduces the possibility of both 
upstream heating and cooling. In the limit as 
5, + 0, of course, the upstream temperature 
near the shock will decrease. As 5, increases, 
the temperature will increase until <, is so large 
that the net radiative flux across the shock is 
zero. Of course, there will always be a radiative 
flux to the wall. As &,, increases still further, the 
net radiative flux across the shock faces up- 
stream and this, in turn, will increase the 
temperature immediately behind the shock. In 
the limit of an infinite shock layer thickness, far 
from the wall the effects of its presence should 
be negligible. This indicates a decoupling in the 
structure of the flow field, which consists of a 
shock structure tailed by an infinite subsonic 
stagnation flow over a cold wall. 

Since positive < and x are in the same direc- 
tion, the integrations starting from 8, and 13,, 
(i.e. from r = -cc and c,) imply that dc, > 0 
and d&, < 0, respectively. Equation (23) implies 
that G,(B) and G&0) will go in the opposite 
direction for the same 8 and the same sign of de. 

Combining equations (21) and (24) we have 

$=$(O_ -0) 

which implies that 

-2 . dG to 
d0 

(27) 

(28) 
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Since for the b-branch starting from 8, < t?,, 
d& < 0, and 8 < 8,, we have 

dG, de 5 0 for de 2 0 

and G, and Gb will never intersect when 0, < 6,. 
Consequently we have the relation 

8, > 8,. (30) 

Note that this implies that the velocity at wall 
will be always smaller than that without 
radiation and the assumption of a porous wall 
may be justified. This equation also implies 
that the wall temperature is lower than the 
corresponding radiationless case. 

Also, equation (21) implies that 

G, >< F, for l9 5 8, (31) 

G, c F, for 0 < 8,. (32) 

Next, we wish to prove that G, and Gb will not 
interesect at a point where 8 > &. If 0 > (3, 
and d& < 0, G,, > F,. Because of the fact that 
F, > F,,t equations (30) and (31) indicate that 
G, and G, will not intersect. Consequently we 
have 

8 < 8, (33) 

Note that equation (33) combined with equation 
(18) imply that velocity is always decreasing in 
the shock layer from the shock toward the wall. 
Consequently for hypersonic flow the tempera- 
ture in the shock layer is also monotonically 
decreasing from the shock to the wal1.S 

From equation (33) it is clear that 

dG -50 for eqe,. de 

7 This is true if 0 <: [y/(y + l)‘] but the equality implies 
T. < 0 which is impossible. 

$ Equations (31) and (34) indicate that for the infinitely 
thick shock layer problem the largest 0, which will allow 
G, and Gb to intersect at the point 0 = [(y - 1)/2(y + l)]’ 
(= &, say), which corresponds to a maximum Fb and 
40,) = f. is em = 90,. For em > 90, the temperature in the 
shock layer is monotonic. This em corresponds to M, = 1.89 
for y = 1.4. Clearly for a shock layer of fmite thickness this 
condition is too strong. 

From the above simple study of the G- 
function, we see clearly that all of the subcases 
mentioned earlier on the basis of physical 
arguments do exist. The various locii under 
discussion are shown in Fig. 2. Case 1 is the 

F 
G 

/ 
/ 

/ 
/ 

0 shock 

----Go 
____Gb \ \ \ \ \ . \ \ \ ’ 

\ \ P_ \ Case 5 
Case 4 

* LOCUS of 
“CCoa,‘,‘z 8 wall 

Case I 
45. 

0 0, 1 8 

FIG. 2. Five subcases in F, G-0 plane. 

limiting case of <, = 0 (e,,, = BwslJ. Case 3 
separates those cases for which there is up- 
stream heating (above) from those for cooling 
(below), which are represented as cases 4 and 2, 
respectively. Clearly case 3 corresponds to the 
classical uniform conditions of upstream flow 
and only in this special case do the classical 
Rankine-Hugoniot jump conditions across the 
shock (based on M,) remain valid. As c, 
approaches infinity, the decoupling case arises 
(case 5). 

The four parameters which characterize the 
problem are the free stream Mach number 
M, (or e,), the parameter indicating the 
relative importance of radiative to convective 
flux K (which is inversely proportional to the 
Boltzmann number), the specilic heat ratio y, 
and the modified optical thickness of the shock 
layer &,,. It is always possible to consider 
approximately the limiting cases analytically, 
e.g. small and large K [2]. But the main 
interest lies in the using of x, instead of 5, as 
one of the parameters, which may answer the 
importance of radiation in the physical plane. 



1606 KUEI-YUAN CHIEN 

This proves to be somewhat complicated with- 
out using numerical integration. 

Transformation from the r-plane to the 
x-plane requires some knowledge of the volu- 
metric absorption coefficient, which was approxi- 
mated by Shwartz [9] as 

(35) 

for air in the temperature range of 103-lo4 “K. 
The subscript zero refers to certain reference 
conditions, which were chosen to be (plc), = 
39.3 (ft - ‘) at To = 32400”R and p. = psca ,eve, 
[lo]. We also choose 111 = 1 and n = 1,732 
~differenti~ approximation [6]) which are re- 
quired to evaluate x [see equation (9)]. 

RESULTS AND DISCUSSIONS 

The importance of one of our four major 
parameters, namely, 5, is apparent from Fig. 2. 
The range 0 < <, < co corresponds to 1 < 
case number < 5. It is clear from Fig. 2 and 
equation (18) that the velocity upstream of the 
shock is accelerated for cases 1 and 2, de- 

celerates for cases 4 and 5. and remains un- 
changed for case 3. The downstream velocity 
always decreases from the shock toward the wall 
as mentioned before. Velocity, and hence tem- 
perature if 6, & 98,, decreases at the wall and 
increases at the shock as 5, increases. The 
radiative flux, (defined positive in the negative 
x-direction), is always negative at the wall but 
there increases in magnitude as the shock layer 
thickens, but increases from a negative to a 
positive value at the shock. The flux at the shock 
vanishes for case 3, the value of {, for which. 

r w3 say, is a function of M,, K and y. It is 
interesting to note that the radiative flux is 
monoto~c as a function of 4, both at the shock 
and at the wall whereas Yoshikawa and Chap 
man [1] show some local maximum for certain 
cases at the wall. Because they used real gas 
tables and neglected upstream absorption, as 
compared with the present investigation. their 
problem has been reworked with a perfect gas 
model and somewhat different method [ 111, and 
a similar local maximum was found. 

Equation (24) has been integrated numerically 
subject to equations (25) and (26). A dimension- 

FIG. 3. Dimensionless temperature profiles. 
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less temperature T and a dimensionless radiative 
flux q have been defined as 

TsRT=,-,2 
c: 

(36) 

2 qEY - 
( > 

y-1 4 8,-e -= 
mlcl y + i em 8, . 

(37) 

Note that 4 has been normalized by the 
strength of the shock, lJ,, and hence relative 
magnitudes of g are comparable only for the 
same 0,. A constant 

K’ = 2 (,/2)(y + 1)’ @,/y3(r - 1) (38) 

was introduced by Heaslet and Baldwin [2] as a 
criterion for the relative importance of radiation 
for the shock structure problem but it is not the 
sole criterion in the shock layer problem, as can 
be seen clearly in Fig. 3. It is also interesting to 
note (in Fig. 3) that a much stronger radiation 
effect exists near the shock for a relatively thick 
gas in the shock layer, in contrast to the same 
order effect both near the shock and the wall in 
[l]. Because of the possibility of both upstream 
heating and cooling as a function of all four 
parameters, or more precisely the fact that 
r,, = &&(K, 8,. y), it is clear that &,,K is not a 
universal scaling parameter for the thin gas 

limit. Fortunately the shock stand-off distance 
for case 3 (i.e. &,,, or x,~ in the 5 or x planes) has 
been found to be a weak function of K, de- 
pending instead rather strongly on 8,. Also, as 
shown in Table 1, the maximum upstream 
cooling effects are small enough, and decrease 
as 8, increases, that for the case of interest to us, 
say M, 2, 10, both x,, and &,,, are small and 
only case 4 need be considered for practical 
purposes. It does result that (&K/K’) is an 
approximate scaling parameter for a thin gas for 
case 4. Local Mach number at the shock, If, and 
&, and wall temperature normalized with respect 
to the free stream temperature are shown in 
Figs. 4-6. In general the radiative effect is 
proportional to &,,/t,,, K/K' but inversely 

Table 1. Dimensionless ~011 temperature and 
radiative fluflux at &I (shock) for case 1 

em K/K’ T(O-)/T( - 00) 8, 

0.1 0.213 0.9909 - OQO65 
0.1 1.061 0.9579 - 0.0301 
0.1 5.305 0.8477 -0.1095 

0.13 0.213 0.9980 -0GOO65 
0.13 1.061 0.9899 - 000335 
0.13 5.305 0.9534 -0.01544 

Limit of, 

\. 
0 l _- 

-4. 
Limit of _-1 

‘r\ 
&A.& 

A-A 

I Limit-b 

FIG. 4. Local Mach number at t4e shock. 
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0.4 

i 
t 

0.6 - 

Limii_o_fb 
i 

FOG. 6. Normalized wall temperature. 

FIG. 5. Dimensionless radiative Bux. 

proportional to 8,. Note also that the local 
Mach number at the shock equals to the free 
stream Mach number when {, = I&,,,. Three 
specific cases have been considered based on the 
atmospherical model of Minzner et al. [12). 
They are tabulated in Table 2. Because of the 
lower density at higher altitudes, K may 
become very large for not too high Mach 
number. Since the volumetric absorption co- 
eficient depends strongly on the temperature, 
and the latter depends heavily on the Mach 

number, especially in hypersonic flow, tJ, actu- 
ally is a stronger parameter for the same x, to 

Altitude M 
(K ft) m 

loo 10 
150 10 
100 15 

@K’ K/K 

0.16775 0.897 
0.16775 12.592 
0.17098 6527 
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determine the radiative effects than K/K’, as 
can be seen from Figs. 7-9 ; but K/K’ is stronger 
for the same 5, as shown in Fig. 10. It is clear 
from Fig. 7 that a shock layer of order one foot 
is not optically thin, especially at the high M, 
cases of interest. In Fig. 10 also is shown 1, for 
one case as calculated without upstream ab- 
sorption [ 111. We can see a little hump there in 
contrast with the monotonic behavior obtained 
in the present investigation. There is also quite a 
difference in the asymptotic value of ?j, for large 
Bouguer number. The inclusion of upstream 
absorption raises the temperature in the shock 
layer, and hence an increase of flux going into 
the wall. For low Bouguer number, the rise in 
temperature is small and so the effect is not 

102 
em K/K’ 

0~16775 0697 0 
0.17098 6.527 b 
016775 12.592 0 

10 - 
z 
. 

2’ 

4 

IO 

t, 

FIG. 7. Shock stand-off distance. 

6 A 

803 4 K/K’ @tOfl nom 

0.16775 0.697 0.17096 6.527 20.36 s 44.63 
0.16775 12592 20.36 0 

Limit 

of ___( 

Limit ofr 
_--7.. 

Limit of’ 

I I I 
01 I IO 

Kw, 11 

FIG. 8. Local Mach number at the shock. 

I 
IO 

xbv 5 ft 

FIG. 9. Normalized wall temperature. 
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B K/K ’ 

0.167m5 0.697 
Shock WOll 

0 * 
Limit of ---Q_ 

0.17096 6527 
0.6- 0.17096 6,527 % “d.0, 

12.592 ObsO’r 
: 

0.16775 
FMDI] 

l 

5, ore negative 

FIG. 10. Dimensionless radiative transfer. 

pronounced. Without upstream absorption, the 
temperature right behind the shock is fixed for 
all Bouguer numbers with the same free stream 
Mach number. As the layer gets thicker, the 
temperature of the gas adjacent to the wall 
decreases [i]. This will decrease the “effective” 
temperature in the shock layer, and so it is 
plausible to find a local maximum. Temperature 
profiles are shown in Figs. 11 and 12, both in x 
and < coordinates. 

Clearly the upstream heating effect is seen to 
be quite large, both in magnitude at the shock, 
and the range of its influence. This is similar to 
that in [2] where similar high temperature 
distribution relative to that of the free stream 
prevails for a length of the order of one photon 
mean free path. For atmospheric entry, this 
corresponds to a length of astronomical scale in 
the physical plane. simply because the volu- 
metric absorption coefficient is temperature 
dependent and the atmospheric temperature is 
quite low. Of course, equation (35) is an approxi- 
mation and spectral considerations would lead 
to strong absorption at relatively cold tempera- 
ture levels in some bandwidths. 

Define a characteristic upstream 
length 1 by 

absorption 

T(O_) - T(1) 

z-(0_) - T( - co) = o.99 (39) 

x. ft x108 x, ft x. ft 

FIG. 1 l(a). Temperature profile. 

For high free stream Mach numbers M,, 
T(O-) z ?;, where ‘I is the free stream stagnation 
temperature; since for air 17; zz M2,/5 T(- co) 
we obtain 

T(I)r2x 10-3M;T(-l;o). (4) 

Clearly for large M,, T(I) may be high enough 
to give not too large an 1. For example, with 
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Id eo, *o. I7096 
h’fi6.527 

IO’ 
I I I I I I I I I 

-10' -Id -103 -104 -105 -106 -10’ - 108 -10' -10’0 -I 

x -10, 11 

FIG. 1 l(b). Upstream temperature profile. 

&o = 0.17096 
K/K’.6.527 

cw = 4.766 
I* ‘2.9511 

1 L 4 

E E 

FIG. 1 l(c). Temperature profile. 

M, = 50 and T( - co) = 4 x lo2 ‘R, we obtain 
1 z 0 (104) ft from Fig. 12(b). In the three- 
dimensional case, the energy flux in the steady 
state will be dilutated as l/R’, where R is the 
distance from the body; we then expect 1 z 0 
( 102) ft. It is clear that equation (40) is valid only 
when 2 x 1O-3 M2, >, 1. 

In conclusion, it is of interest to compare the 
present results with those of [l, 23. In the shock 
structure problem [2] radiation is directed up- 
stream at the shock and vanishes somewhere far 
downstream, in contrast to the possible sign 
reversal within an actual shock layer. Similarly, 
from the same study, one may see that both 
T(O-) and T(O+), as well as T at any effective 
wall location, are larger than those for a finite 
shock layer. Since [l] neglects upstream ab- 
sorption entirely, the isothermal oncoming 
stream implies underestimating both T(O-) and 

1611 

T(O+). Figure 10 shows the specific differences in 
flux magnitude and distribution in the two cases 
with and without upstream absorption under 
otherwise analogous conditions. 

x. fl xlOB x, ft x. ft 

FIG. 12(a). Temperature profile. 
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-101 -102 -103 -lOa -105 -106 -10’ -108 -109 _,O’O _,O” 

x-to, ft 

FIG. 12(b). Upstream temperature profile. 

I_ 

1_ 

2_ 
4: 

8, =0.17098 
X/K’+.527 

c&v 3 1.386 

II =1.ooft 

I I I I I 1 
3 -12 -10 -6 -6 -4 -2 

t 

FIG. 12(c). Temperature profile. 
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RQrd-La mtthode de Heaslet et Baldwin est &endue en introduisant une paroi poreuse, noire et 
froide afm de changer effectivement la condition a la limite aval pour l’absorption des couches de choc. 
On montre que le probl&me g&n&al peut etre decompose en cinq subdivisions reli&es a la variation nette 
du transport par rayonnement a travers le choc avec un changement de la distance de detachement du 
choc. Le. gas en avant du choc peut Ire soit chauffe, soit refroidi. Dans certain5 cas interessants, ce 

chauffage pr&ninaire peut &re important. 



RADIATION COUPLED SHOCK LAYER 1613 

--Die Methode van Heaslet-Baldwin wurde mit der Einlilhrung eincr kalten, schwarzen 
und por&sen Wand erweitert. urn die Grenzbedingungen Rtr strombwPrts gelegene, absorbierende 
Stoss-Schichten wirkungsvoll zu Indern. Es wird gezeigt, dass das Gesamtproblem in ftinf Teilprobleme 
aufgeliist werden kann, die eine Beziehung herstellen zur Anderung des Strahhmgswilrmefhtsses tiber die 
Stossfront bei binderungen der Stosslage. Das Gas vor dem Stoss kann entweder erwilrmt oder gektihlt 

sein. Fur bestimmte Fiille kann diese vorhergehende Heizung von Bedeutung sein. 

Astwowaqnsr-?rIeroR KHCJte n BOJtRyKHa 6ua pacmapett nOCpeJtCTBOM BBe~eHuFI XOJ'IO~HOi, 

'SepHO# ll IIOpHCTOti CTeHKU nJlR TOFO, 'fTO6bl e@@3KTWBHO UaMeHRTb I-paHWiHOe yCJlOBHe 

Bma no n0~0~y firm norso~amusix yAapHblx CnoeB. lloKaaaHo,~~o odnlylo aanasy mom~o 

CBecTK K nRTn cnysam, OTH~CR~HXC~I K HardeKemii0 nepeHoca nywc~oro noToKa nonepeK 

yaaptioi B0j1~bl c KaMeHeKKeM paccTomia~ 0~ 0TorueAmeti ynapHoi4 B~JIH~. raa ~0 cKagKa 

ynJrOTHeHIlRMO)KeT6blTbHaI'peTbI?d KJIEiXOJIOAHbIM. B HeKOTOpblXnpe~CTaBJIFllOIQWXEiHTepeC. 
CJIyYaRX 3TOTHarpeB MOlKeT 6blTb 8HaWiTeJlbHbIM. 


