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RADIATION COUPLED SHOCK LAYER
INCLUDING UPSTREAM ABSORPTION EFFECTS*
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Abstract—The method of Heaslet and Baldwin is extended with the introduction of a cold, black and
porous wall, so as to effectively alter the downstream boundary condition for absorbing shock layers, It is
shown that the general problem may be resolved into five subcases related to the net variation of radiative
flux transfer across the shock with change in shock stand-off distance. The gas ahead of the shock may be
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NOMENCLATURE
integration constants, equations
(2) and (3), respectively;
exponential integral of the nth
order;
defined by equation (20);
defined by equation (22);
enthalpy;
radiation—convection parameter,
below equation (13);
reference K defined by equation
(38);
shock detachment thickness;
upstream absorption length, equa-
tion (39);
constant, equation (9);
integration constant, equation (1);
constant, equation (9);
pressure;
radiative flux;
dimensionless radiative flux, equa-
tion (37);
gas constant;
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cither heated or cooled. For certain cases of interest this precursory heating may be significant.

T, temperature;

T, dimensionless temperature, equa-
tion (36);

u, velocity ;

v, normalized velocity, equation (11).

Greek symbols

7, gas constant;

0, defined by equation (16);

0 shock strength parameter, equa-
tion (17);

K, mass absorption coefficient ;

& modified optical thickness, equa-
tion (10);

P density;

o, Stefan—Boltzmann constant ;

T, optical thickness (Bouguer num-
ber), equation (7);

() (). ahead of and behind the shock,
respectively;

O quantities evaluated at the wall;

()~,()", immediately before and behind the

shock, respectively.

INTRODUCTION

THE PRESENCE of radiation as one of the mech- .
anisms for energy transfer in a hypersonic flow
complicates the problem considerably. Physic-
ally it eliminates the classical limitation to
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downstream facing effects in supersonic flow.
Mathematically it manifests itself by the appear-
ance of a nonlinear integro-differential energy
equation.

Yoshikawa and Chapman [1] considered the
radiating shock layer problem assuming a non-
absorbing upstream flow, the latter being in-
cluded in a study of shock wave structures by
Heaslet and Baldwin [2]. Of course, due to the
inherent coupling between the upstream and
downstream flow fields undergoing radiant
energy exchanges across the shock, the shock
layer cannot be treated independently. More
precisely, all of the conditions, including temper-
ature and local Mach number, for those points
just ahead of the shock depend upon the body
geometry, surface properties and far upstream
fluid properties; consequently the conditions
immediately behind the shock and the entire
shock layer are affected in turn. In particular, the
jump conditions across the inviscid shock dis-
continuity are unknown initially, and instead
are to be found along with the shock wave
“structure”. Pai and Speth [3] have shown that
the effective temperature jump across the shock
is reduced by upstream heating in a shock
structure problem, which can also be seen from
the results shown in [2]. The introduction of a
cold wall at a finite distance downstream makes
possible both upstream cooling as well as
heating, and it is the main interest of the present
investigation to study the radiative flux coupling
ahead and behind of a transparent inviscid
shock discontinuity including the cold surface
influence.

GOVERNING EQUATIONS

Some simplification of the rather complex
general problem is appropriate. Consider the
case of a uniform, hypersonic flow incident on a
cold, black and porous wall. All properties in
the flow field are assumed to be dependent on
the single variable, x (see Fig. 1). For an inviscid,
emitting and absorbing but otherwise perfect
gas, in such a one-dimensional, steady flow, the
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governing equations are the familiar

pu = m, (1)

p + mu = mc, (2)

mi(h + 3u%) — g = c;my (3)

p = pRT )

h=_—'_P (5)
y—1p

Here m,, ¢, and ¢, are integration constants to
be evaluated far upstream. Contributions from
radiative pressure and radiative internal energy
are assumed negligible, and the gas both grey
and in local thermodynamic equilibrium. All
notations in equations (1-5) are of standard
form; the radiative flux term, g. is given by [4, 5]

q(t) = 20 T Sgn (t — 7) T* E,|t — t|dt (6)

and is defined to be positive in the negative x-
direction. The optical thickness, 7, is defined as

= {prdx (7

Obmry %

and attains its maximum positive value for the
overall shock detachment thickness, L,

L
1, = | pxdx. (8)
0

o, E,, and « are the Stefan-Boltzmann constant,
the exponential integral of the second order [4],
and the mass absorption coefficient, respec-
tively.

——
Mx>> 1|
4
x=0 x=L X
shock wall
t:0 L ™

Fi1G 1. Schematic of flow.



RADIATION COUPLED SHOCK LAYER

The assumption of a porous wall results from
the choice of a one-dimensional flow model and
thus the need to absorb “mass”. For hypersonic
flow, the shock layer kinetic energy is much less
than its thermal energy. Since our main interest
is the determination of the thermal field, the
introduction of a realistic cold wall as a heat
sink is plausible. It is anticipated that a one-
dimensional model will yield some useful insight
into the behavior for multi-dimensional prob-
lems with the implied geometrical dilutation. It
is worth noting that the one-dimensional model
furnishes an upper-bound.

Since the differential approximation [6]
method, or its equivalent kernel substitution
method [7] in the one-dimensional case has
been found to give rather accurate results for
the shock structure problem [8], the same
approximation has been adopted here. Hence
we assume

E,(1) = mexp (—n1). 9)

Following Heaslet and Baldwin [2], we
introduce a modified optical thickness para-
meter

E=nt (10)
and a normalized velocity
(&) = u(t)/c, (1
so that
T= Eiv(l — ). (12)
R

The governing equations can be combined into
a single integral equation of the form

2y Ay - e
2 _ )
v y+1v+ y+1 ¢
Sw
K

-X J' (v — v?)* Sgn (£ — &;) exp

(—|&-&Dhde,  (13)

where K = 32moc$(y — 1)/Ay + 1) m;nR?, which
is proportional to the ratio of the radiative to the

1603

convective energy transfer, i.e. an inverse modi-
fied Boltzmann number.

Far upstream (¢ - — o) the right-hand side
of equation (13) vanishes and v = v, say. If v,
designates the other root for the case of vanishing
g, then the left-hand side .of equation (13)
implies

2y

Ul+vz=——

T T (14)

Since the radiative flux is continuous at the
shock, where we set £ = 0, equation (13) gives

W07) + 0(0+) = —21

y+1
where the superscripts + and — refer to im-
mediately behind and before the shock, res-
pectively. Of course, the radiation may modify
t(07) to something other than »,. Thus the
classical Rankine-Hugoniot conditions for con-
ditions on the downstream side of a shock (and
M, free stream) are valid only when the net
radiative flux at the shock vanishes.
For convenience introduce the continuous
variable

(15)

8 =(V—1—1 - )2 =0, + (0 = 0) (0 — v5)
(16)

where
0, = %(vl - 02)2- (17)

The point where the local Mach number is unity
written in the present notation is given by

vt = y—i—l = $[007) + v(0*)] (17a)
and so we have
oe) = ;—% — S O[O (18)

Consequently the governing equation can be
recast as

Sw

B —0,=4% | Sgn(¢ — &) F[&(&,)]exp

(=& =& pag, (19
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where

K Y y—1 4
FO)=—|—+ (8 0t -0 .
(20)
Note that for a free stream Mach number
approaching infinity, 8, approaches (y + 1)72
(e 01736 if y = 3).
Differentiating equation (19) with respect to
£, we have

dé

(21)
where

Sw
G=3 _Iw FO[, D exp (=& — & de,.

(22)
Thus
dG
rrin 0, —0 (23)
or finally
dé¢ 06, -6
dd  F-G (24)

which is precisely the same relation developed
by Heaslet and Baldwin [2] for the shock
structure problem. Again both F and G have
two branches, which will be denoted by sub-
scripts a and b for ahead of and behind the
shock, respectively.

The boundary conditions are

(- —~ow: 6=10,," G,=F4[0,) (25)
é = éw: 9 = e(fw) = gw* Gb = ew - 000'
(26)

The far upstream boundary condition is
identical to that for the shock structure problem,
and follows upon combining equations (21) and
(23) and noting that (d6/d{) ¢ ., _,, = 0. The wall
condition comes from equations (19) and (22).
It will be clear that 6, is a convenient starting
value in place of the equivalent &,
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The definition of G, equation (22), makes
clear that G is a continuous function of ¢, and
hence of 6. A solution may be obtained in the
f-plane by numerical integration of equation
(24) from 6, and 0, for the respective branches,
with equations (25) and (26) furnishing starting
values. The shock exists at G,(8) = G,(0) corres-
ponding to ¢ = 0. Equation (21) then implies

= £(0) and a specific wall location, £, for the
assumed 6,,.

SUBCASES

Physically the introduction of a cold wall
introduces one more characteristic length, ie.
L. It also introduces the possibility of both
upstream heating and cooling. In the limit as
£, — 0, of course, the upstream temperature
near the shock will decrease. As &, increases.
the temperature will increase until &, is so large
that the net radiative flux across the shock is
zero. Of course, there will always be a radiative
flux to the wall. As £, increases still further, the
net radiative flux across the shock faces up-
stream, and this, in turn, will increase the
temperature immediately behind the shock. In
the limit of an infinite shock layer thickness, far
from the wall the effects of its presence should
be negligible. This indicates a decoupling in the
structure of the flow field, which consists of a
shock structure tailed by an infinite subsonic
stagnation flow over a cold wall.

Since positive & and x are in the same direc-
tion, the integrations starting from 8 and 0,
(ie. from ¢ = —oo and &) imply that dé, > 0
and d¢, < 0, respectively. Equation (23) implies
that G,(#) and G,(#) will go in the opposite
direction for the same 6 and the same sign of df.

Combining equations (21) and (24), we have

dG d¢
B a‘é(ew - 0) (27)
which implies that
dG,
0 < 0. (28)
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Since for the b-branch starting from 8, < 0,
d¢, < 0,and 0 < 0, we have
dG,
b g
dg ~
and G, and G, will never intersect when 0, < 6.
Consequently we have the relation

0 for d0=0 (29)

9, > 0, (30)

Note that this implies that the velocity at wall
will be always smaller than that without
radiation and the assumption of a porous wall
may be justified. This equation also implies
that the wall temperature is lower than the
corresponding radiationless case.

Also, equation (21) implies that

G,2F, for 0s60, (31)
G,<F, for <8, (32)

Next, we wish to prove that G, and G, will not
interesect at a point where 6 >0, If 8 > 0,,
and d¢, < 0, G, > F,. Because of the fact that
F, > F,} equations (30) and (31) indicate that
G, and G, will not intersect. Consequently we
have

0 <0, (33)

Note that equation (33) combined with equation
(18) imply that velocity is always decreasing in
the shock layer from the shock toward the wall.
Consequently for hypersonic flow the tempera-
ture in the shock layer is also monotonically
decreasing from the shock to the wall.}

From equation (33) it is clear that

46,

0 s0 for 6246,

(34)

t This is true if @ < [y/Ay + 1)*] but the equality implies
T, < 0 which is impossible.

1 Equations (31) and (34) indicate that for the infinitely
thick shock layer problem the largest 8, which will allow
G, and G, to intersect at the point 8 = [(y — 1)/2(y + 1)]?
(= 0,, say), which corresponds to a maximum F, and
8,) = 4,is 0, = 96, For 8, > 96,, the temperature in the
shock layer is monotonic. This 6, corresponds to M, = 1-89
for y = 1-4, Clearly for a shock layer of finite thickness this
condition is too strong.
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From the above simple study of the G-
function, we see clearly that all of the subcases
mentioned earlier on the basis of physical
arguments do exist. The various locii under
discussion are shown in Fig. 2. Case 1 is the

/

Locus of
8 shock

FiG. 2. Five subcases in F, G—0 plane.

limiting case of &, = 0 (Byuox = Owan). Case 3
separates those cases for which there is up-
stream heating (above) from those for cooling
(below), which are represented as cases 4 and 2,
respectively. Clearly case 3 corresponds to the
classical uniform conditions of upstream flow
and only in this special case do the classical
Rankine-Hugoniot jump conditions across the
shock (based on M) remain valid. As &,
approaches infinity, the decoupling case arises
(case 5).

The four parameters which characterize the
problem are the free stream Mach number
M, (or 6,), the parameter indicating the
relative importance of radiative to convective
flux K (which is inversely proportional to the
Boltzmann number), the specific heat ratio y,
and the modified optical thickness of the shock
layer ¢, It is always possible to consider
approximately the limiting cases analytically,
e.g. small and large K [2] But the main
interest lies in the using of x,, instead of &, as
one of the parameters, which may answer the
importance of radiation in the physical plane.
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This proves to be somewhat complicated with-
out using numerical integration.

Transformation from the &-plane to the
x-plane requires some knowledge of the volu-
metric absorption coefficient, which was approxi-
mated by Shwartz [9] as

(35)

for air in the temperature range of 103-10* °K.
The subscript zero refers to certain reference
conditions, which were chosen to be (pk), =
393 (ft_l) at T(") = 324000R and Po = Psca level
[10]. We also choose m =1 and n= 1732
{differential approximation [6]) which are re-
quired to evaluate x [see equation (9)].

RESULTS AND DISCUSSIONS

The importance of one of our four major
parameters, namely, £, is apparent from Fig. 2.
The range 0 < £, € cocorresponds to 1 <
case number < 5. It is clear from Fig. 2 and
equation (18) that the velocity upstream of the
shock is accelerated for cases 1 and 2, de-
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celerates for cases 4 and 5. and remains un-
changed for case 3. The downstream velocity
always decreases from the shock toward the wall
as mentioned before. Velocity, and hence tem-
perature if 8, > 96,, decreases at the wall and
increases at the shock as &, increases. The
radiative flux, (defined positive in the negative
x-direction), is always negative at the wall but
there increases in magnitude as the shock layer
thickens, but increases from a negative to a
positive value at the shock. The flux at the shock
vanishes for case 3, the value of ¢, for which,
¢y, say, is a function of M, K and y. It is
interesting to note that the radiative flux is
monotonic as a function of &, both at the shock
and at the wall whereas Yoshikawa and Chap-
man [ 1] show some local maximum for certain
cases at the wall. Because they used real gas
tables and neglected upstream absorption, as
compared with the present investigation. their
problem has been reworked with a perfect gas
model and somewhat different method [11], and
a similar local maximum was found.

Equation (24) has been integrated numerically
subject to equations (25) and (26). A dimension-

0-25
8520} Xk’
Cose 3— - Q213
— | Q61
o 530%
Cose 4 o 5308
&8 0213
o  1+-08!
020
7
015
010}
ol |
~-30 -20

€78,

FI1G. 3, Dimensionless temperature profiles.



RADIATION COUPLED SHOCK LAYER

less temperature T and a dimensionless radiative
flux § have been defined as

TEB;=v—v2 (36)
1
2 (y-1\q _0,-96
qmmlcf\y+l)0m_ 0, (37)

Note that § has been normalized by the
strength of the shock, 6., and hence relative
magnitudes of § are comparable only for the
same 6. A constant

K=2(J)y+ 1050 -1) (38)

was introduced by Heaslet and Baldwin [2] as a
criterion for the relative importance of radiation
for the shock structure problem, but it is not the
sole criterion in the shock layer problem, as can
be seen clearly in Fig. 3. It is also interesting to
note (in Fig. 3) that a much stronger radiation
effect exists near the shock for a relatively thick
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limit. Fortunately the shock stand-off distance
for case 3 (i.e. ,, or x,, in the £ or x planes) has
been found to be a weak function of K, de-
pending instead rather strongly on 6., Also, as
shown in Table 1, the maximum upstream
cooling effects are small enough, and decrease
as 0, increases, that for the case of interest to us,
say M, > 10, both x,,, and &, are small and
only case 4 need be considered for practical
purposes. It does result that (£, K/K’) is an
approximate scaling parameter for a thin gas for
case 4. Local Mach number at the shock, g,, and
g, and wall temperature normalized with respect
to the free stream temperature are shown in
Figs. 4-6. In general the radiative effect is
proportional to &,/¢,., K/K' but inversely

Table 1. Dimensionless wall temperature and
radiative flux at wall (shock) for case 1

: g 0 K/K' TO7)/T(-x) 3w
gas in the shock layer, in contrast to the same
order effect both near the shock and the wall in 01 0213 09509 —0:0065
g 01 1-061 09579 —0-030t
[1]. Because of the possibility of both upstream 01 5305 08477 —01095
heating and cooling as a function of all four
parameters, or more precisely the fact that 013 0213 09980 —000065
e R 013 1-061 0-9899 —0-00335
§W3 = f‘”(K. 0. 7). it is clear that £, K is not a 013 5305 09534 — 001544
universal scaling parameter for the thin gas
+0 % & 8y  K/K
253 0047 (3] 0213 =
Three points . 9% 95L&
35 o 347 0-00881 013 0213 O
0-00886 061 A
' 0-00915 5305 0
a Limit (_)f o
30 -
o) Three points
~ 25 —a.,_ @
¥ ~ o » Limit of
~. o
2.0 }— ~a, Limit of ,
o‘\‘\ Limit of
LY. imit of 4 )
R o Limit of |
Limit of
o | 1

e" /E'

102

FI1G. 4. Local Mach number at the shock.
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FiG. 6. Normalized wall temperature,

proportional to 6,. Note also that the local
Mach number at the shock equals to the free
stream Mach number when &, = £,,. Three
specific cases have been considered based on the
atmospherical model of Minzner et al. [12].
They are tabulated in Table 2. Because of the
lower density at higher altitudes, K may
become very large for not too high Mach
number. Since the volumetric absorption co-
efficient depends strongly on the temperature,
and the latter depends heavily on the Mach

number, especially in hypersonic flow, 8,, actu-
ally is a stronger parameter for the same x,, to

Tabie 2. 8, and K/K'

Altitude ,
(Kft) M, 8, K/K
100 10 016775 0-897
150 10 016775 12-592
100 5 0-17098 6527
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determine the radiative effects than K/K’, as
can be seen from Figs. 7-9; but K/K' is stronger
for the same &, as shown in Fig. 10. It is clear
from Fig. 7 that a shock layer of order one foot
is not optically thin, especially at the high M
cases of interest. In Fig, 10 also is shown g, for
one case as calculated without upstream ab-
sorption [11]. We can see a little hump there in
contrast with the monotonic behavior obtained
in the present investigation. There is also quite a
difference in the asymptotic value of g, for large
Bouguer number. The inclusion of upstream
absorption raises the temperature in the shock
layer, and hence an increase of flux going into
the wall. For low Bouguer number, the rise in
temperature is small and so the effect is not

10

ft

Xy

s3]

1609

80 KIK*
0-16775 0897 ¢
017098 6527 4
0-16775 12592 O

1
G

L
1-0

001
ew
F1G. 7. Shock stand-off distance.
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FiG. 8. Local Mach number at the shock.
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F1G. 10. Dimensionless radiative transfer.

pronounced. Without upstream absorption, the 105 ——

temperature right behind the shock is fixed for
all Bouguer numbers with the same free stream
Mach number. As the layer gets thicker, the
temperature of the gas adjacent to the wall
decreases [1]. This will decrease the “effective”
temperature in the shock layer, and so it is
plausible to find a local maximum. Temperature
profiles are shown in Figs. 11 and 12, both in x
and ¢ coordinates.

Clearly the upstream heating effect is seen to
be quite large, both in magnitude at the shock,
and the range of its influence. This is similar to
that in [2] where similar high temperature
distribution relative to that of the free stream
prevails for a length of the order of one photon
mean free path. For atmospheric entry, this
corresponds to a length of astronomiical scale in
the physical plane, simply because the volu-
metric absorption coefficient is temperature
dependent and the atmospheric temperature is
quite low. Of course, equation (35) is an approxi-
mation and spectral considerations would lead
to sttong absorption at relatively cold tempera-
ture levels in some bandwidths.

Define a characteristic upstream absorption
length | by

TO)-T(®) _
0 = T— ) = *% (39)

8, =0-17098
KIK=6 527
X =295t

N

10%—

°R

10%}—

'02 ] ALu;l | |
-0 -5 'Ci0 -5 0 2 4

x,  f1xI0® x, fr x, f1

FiG. 11(a). Temperature profile.

For high free stream Mach numbers M.
T(07) = T, where T, is the free stream stagnation
temperature; since for air T, & M2/5 T(— )
we obtain

T =2 x 1073 M2 T(—o0).  (40)

Clearly for large M. T(I) may be high enough
to give not too large an /. For example, with



RADIATION COUPLED SHOCK LAYER

1611

10°

8, *0-17098
KAK=6-527
® | oS X, =2-95tt
~ Yoy
102 | ! | ] ] ] | | I
-10' <102 -10°  -10° -10° 108 -107  -10%8 -10° -10° -10"
x-10, f1
F1G. 11(b). Upstream temperature profile.
10°
By =0-17098
K/K26-527
£, 4765
X, =295t \\
10%—
x
o
.
10%—
10? | | | ] ] |
-20 -16 -12 -8 -4 0 2 4
€ €

FiG. 11(c). Temperature profile.

M, = 50and T(— o) = 4 x 102°R, we obtain
I~0 (10% ft from Fig. 12(b). In the three-
dimensional case, the energy flux in the steady
state will be dilutated as 1/R?, where R is the
distance from the body; we then expect [ = 0
(10%) ft. It is clear that equation (40) is valid only
when 2 x 1073 M2 > 1.

In conclusion, it is of interest to compare the
present results with those of [1, 2]. In the shock
structure problem [2] radiation is directed up-
stream at the shock and vanishes somewhere far
downstream, in contrast to the possible sign
reversal within an actual shock layer. Similarly,
from the same study, one may see that both
T(07) and T(0*), as well as T at any effective
wall location, are larger than those for a finite
shock layer. Since [1] neglects upstream ab-
sorption entirely, the isothermal oncoming
stream implies underestimating both T(0™) and

T(0%). Figure 10 shows the specific differences in
flux magnitude and distribution in the two cases
with and without upstream absorption under
otherwise analogous conditions.

10° T
8w 2017098
K/K=6-527
xy =1-00
10°— P
4
o
[Ny
10°—
——
102 1 STy | ]
-10 -5 7 -16 -8 [+] o5 10
X, f1x10° x, ft x, ft

F1G. 12(a). Temperature profile.
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-10' =102 -10%  -10* <105 -108 -107 108 -10° -10° -0
x-10, ft
FiG. 12(b). Upstream temperature profile.
10°
8, =0-17098
K IK*36-527
€. 1-386
x, =1-00tt k
10*—
&
o
10%—
] ] ] | ] ]
10° 575 ST 8 3 Ta 2 0 2
3
F1G. 12(c). Temperature profile.
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Résmné—La méthode de Heaslet et Baldwin est étendue en introduisant une paroi poreuse, noire et

froide afin de changer effectivement la condition a la limite aval pour ’absorption des couches de choc.

On montre que le probléme général peut étre décomposé en cing subdivisions reliées a la variation nette

du transport par rayonnement a travers le choc avec un changement de la distance de détachement du

choc. Le gaz en avant du choc peut étre soit chauffé, soit refroidi. Dans certains cas intéressants, ce
chauffage préliminaire peut &tre important.
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Zusammenfassung— Dic Methode von Heaslet-Baldwin wurde mit der Einfithrung einer kalten, schwarzen

und pordsen Wand erweitert, um die Grenzbedingungen flir strombwiirts gelegene, absorbierende

Stoss-Schichten w1rkungsvoll zu dndern, Es wird gezeigt, dass das Gesamtproblem in fiinf Teilprobleme

aufgeldst werden kann, die eine Bezichung herstellen zur Anderung des Strahlungswirmeflusses fiber die

Stossfront bei Anderungen der Stosslage. Das Gas vor dem Stoss kann entweder erwiirmt oder gekiihlt
sein. Fiir bestimmte Fille kann diese vorhergehende Heizung von Bedeutung sein.

Ausoramua—Merop Xucne u BoaayuHa Guil paciimped MOcpefiCTBOM BBEJIGHHA XOMOJHOIM,
9epHOH B NHOPMCTON CTEHKH AJA TOro, 4YTo0H 3(MpeKTHBHO MBMEHATH rPAHUYHOE YCIOBUE
BHMS 10 OTOKY AJA MOIVIOIAMMX YAAPHHX cioes. [loxazano, uTo o6LIyI0 3aRa4y MOKHO
CBECTM K NATH CIY4YaAM, OTHOCAIMXCA K U3MEHEHHMIO NEPeHOCa JIyYUCTOTO TOTOKA MOMepPer
YAApHOH BOJHBL C M8MEHEHNEM PACCTOAHMA OT OTomeAwed ynapHoi BoaHH. I'as @0 cxavka

YIUIOTHEHUA MOMKET OBITH HarpeTHM WU XOJMOXHBIM, B HEHKOTOPHIX NPEeACTABAAIOUINX UHTEPEC.

CIy4afAX 3TOT HarpeB MomeT OHTD BHAYUTEJILHEIM .
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